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The fluid motion in a strongly stratified lake can be described by
a set of nonlinear dispersive partiat differential equations derived
from the equations of motion. These model equations are solved
numerically by an implicit finite difference scheme. Variable topog-
raphy and the influence of the free surface are taken into account
as well as nonlinear and dispersive terms. The numerical solutions
that are obtained are stable and in good agreement with experimen-
tal results. In the case of wind forcing, they show the typical transi-
tion from barotropic to baroclinic motion.  ® 1995 Academic Press, Inc.

1. INTRODUCTION

The stratification of lakes during the summer months does not
only give rise to the well-known surface waves. In addition to
this external or barotropic motion internal, baroclinic modes
are also possible [30. 18, 17] with generally more conspicuous
signals, Usually, (he vertical density profile is nearly constant
in an upper and lower region of the lake while it is rapidly
changing i a narrow band where the largest temperature gradi-
ent arises. This location is called thermocline. This density
distribution is often modelled by two layers of different but
constant densities separated by a discontinuity sheet at the
location of the thermocline. Such two-layer models are able to
predict the barotropic and the first baroclinic mode [17, 14].
Usually. the resulting equations are simplified by an explicit
vertical integration over the thickness of the layers which leads
to a reduction of the spatial dimensions, This proccdure is
welb known in timnology and occanography and allows (he
description of long waves travelling in shatlow water {17, 8.
The resulting equations are either linear [13, 14, 3] and then
allow lurther simplifications or else they are nonlinear and
then of Boussinesq type |5, 6]. If only one direction of wave
propagation is of interest the Korteweg--deVries equation can
be recovered [21, 34, E0). If wave propagation in fluids of finite
or great depth is modelled, a vertical integration is still possible.
That procedure then leads to so-called finite depth equations
[15, 21] or to equations of the Benjamin—Davis—Ono type [4, 2].

When harotropic wave motion is not the focus it is a common
procedure to eliminate from these equations the barotropic
inode by using the rigid lid assumption because the interaction
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of both modes happens on a short time scale [34, 9] and the
free surface signal is small compared to the elevation of the in-
lerface.

if the waves are excited by wind the barotropic mode is
excited first; internal waves are penerated afterwards. There-
lore, the transient wind load is transformed into a system of
cigenmmuades of the model. Even if the surface disturbances are
small the arising internal waves have large amplitudes and
show a strong nonlinear behavior. For this reason it becomes
necessary to model wind forcing by nonlinear equations.

The equations presented in the next section include nonlinear
and dispersive terms as well as some frictional dissipation; they
allow the excitation by wind forces and the decay processes
by internal dissipation to be modelled |5, 6]. Because of the
coupling of both possible modes and due to the nonlinearities,
the equations generally defy an analytical solution, and one
must resort to a numerical sobution technique. In this paper an
implicit numerical scheme is presented which solves the set of
partial differential equations by a finite difference method. The
proposed scheme leads to a stable solution of the equations
and applications to particular situations agree well with the
experimental results obtained by Schuster [32]. To our knowl-
edge this compuiation is the first for which both possible modes
of a nonlinear two layer model are calculated without elimina-
tion of the barotropic part.

The next section gives some details of the model equations
used and explains the undertying physics. Then the numerical
procedure is presented and some remarks on the stability are
given, Tn the last section of the paper results obtained numeri-
cally are compared with experimental data and, as an additional
application, wind forcing in a channel is modelled.

2. THE MODEL EQUATIONS

We shall confine our attention to the spatially one-dimen-
sional case and therefore ignore effects of the rotation of the
Earth. The more general two-dimensional case including Cori-
olis Torces is treated by Diebels [5]. The following set of equa-
tions was derived by Diebels er al. [6]

(a0 — a), + ((eeay + Iy — i), = 0, (2.1}
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FIG. 1. Geometry and notation. The figure shows the surface z =
ae(x, 1), the interface between the layers z = —hy + a,(x, £) and the bottom
z = —(h, + hy(x)). The horizontal velocities u; and #, are marked as arrows.

au + ((@a + i), = 0, (2.2)

E“ + aﬂlﬁu + Aoy
- 82(%h7fﬁlnl + %hl(hZaZ)xxr) = Ts ™ Tis (23)
EZ! + aa?.alt + 6‘:10,\' + (1 - 5)a1x

_52(% on :lzalxxr + %hZ(h2aZ)xn - %h %Exu) =T T (24)

Equations (2.1) and (2.2} result from a vertical integration of
the continuity eguation over the upper and the lower layers,
respectively, and are known as kinematic wave equations. Here
ay and a, are the elevations of the free surface and the interface,
while #; and i, are the corresponding averaged horizontal ve-
locities; see Fig. 1 for details. The parameter « is the ratio of
a reference amplitude and a vertical length scale; @ measures
the influence of nonlinearity and is assumed to be small, The
last equation pair (2.3) and (2.4) emerges from vertical integra-
tions of the momentum equations where the pressure gradient
was expressed by the horizontal gradient of the elevations.
Taking into account the vertical acceleration leads to dispersive
terms with third-order derivatives; these terms are weighted
with the squared geometrical aspect ratio & which equals the
ratio of the vertical length scale to a typical wavelength. In
general the aspect ratio £ is a small quantity in the shallow
water theory. In deriving the equations it was assumed that

nonlinearity and dispersion are connected by the Ursell num-
ber A

:ﬁzom. (2.5)

This implies that effects due to nonlincarity and dispersion are
of the same order and can balance; therefore, if friction is
neglected, waves of permanent form should be possible [35,
11]. Frictional effects are modelled by the mterms on the right-
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hand side of the equations, which represent the stress tractions
exerted at the surface (7,), at the interface (t;) and at the bottom
(7). It turned out that the following constitutive relations led
to satisfactory reproduction of the attenuation of the waves:

.=V (uwind - l?'f_l)s- (26)
7 = V(1 — ), @7
Ty = VyHa, 2.8)

in which the factors v must be determined by experiments.
Those performed by Schuster [32] show that the numerical
values of the v's depend on the chosen geometry; however, they
are at least an order of magnitude smaller than the nonlinearity
parameter « or the squared aspect ratio &2

The quantity § = pi/p, is the ratio of the density in the upper
layer to that of the lower layer and is slightly smaller than
unity, for which the fluid is stably stratified. We assume & to
be constant and unaffected by the motion; so thermocline ero-
sion and any formation of local baroclinic instability is ex-
cluded.

The underlying physics of the above equations assumes long
wave propagation. Nonlinearity and dispersion influence the
motion, the observed amplitudes may be finite, and a finite
aspect ratio is allowed. These limitations are fulfilled by many
geophysical wave propagation phenomena. As limiting cases
linear two-layer models are included [18, 17, 14, 30]. Also
one-layer models can be recovered. If in the equations of the
one-layer model the nonlinearity and dispersion are kept, then
they are of Boussinesq type [28, 27, 37].

Diebels [5] has shown that the above set of equations leads
to stable wave solutions in the linear limit; the resulting disper-
sion law coincides with that given by Lamb [16] if the latter
is restricted to terms of second order in &. The stability of the
solution of the linear equations is, however, lost if a mathemati-
cal equivalent form of the nonlinear equations is used which
transforms the third-order mixed derivatives into third-order
spatial derivatives as known from the Korteweg—deVries
equation.

In the next section we propose a finite difference scheme by
which Eqs. (2.1)-(2.4) are solved without additional restric-
tions. The scheme reproduces the stability, which is exhibited
by the linearized differential equations.

3. THE FINITE DIFFERENCE APPROXIMATION

3.1. The Numerical Scheme

Instead of the well-known predictor—corrector schemes often
used in approximations of the shallow water equations of Bous-
sinesq type [26, 25, 24] a single step implicit finite difference
scheme is used to solve the linear part of the equations, le.,
all terms not involving a factor e in Egs. (2.1)-(2.4). This
scheme allows simultaneous prediction of both the barotropic
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and baroclinic modes. The predictor—corrector schemes were
not able to deal with both modes in one step for which reason
additional restrictions became necessary, typically a rigid lid
assumption was used to eliminate the barotropic mode (1, 201.

Spatial and temporal coordinates are discretized by the steps
Ax and As, with x = j Ax and ¢ = n Ar, respectively. Each
step is denoted by a subscript j for the jth space step and by a
superscript # for the nth time step. Introducing the difference op-
erators

of it =1
at Ar
of _ S = p

LA Il L oAx) = DI + O(AY?
dx 2 Ax O@Ax) Y 0@x)

+ O(Aty = D} f+ O(An), 3.1

(3.2)

leads to an implicit Eulerian differencing scheme for the leading
linear terms.

The dispersive terms with mixed derivatives require also
implicit differences. Using central differences for the second
spatial derivative will not increase the band width of the re-
sulting matrix. If we define the corresponding operator

Sl = 210+ -

Dif= Ax + O(Ax?) (3.3
the discretization of the dispersive terms reads
oo = DEIDE,F] + O(Ax2, Ar). 3.4)

The simple choice of the dependence of the shear stresses
on the velocity ditferences (2.6)—(2.8) allows a posteriori con-
sideration of the forced motion or inclusion of dissipation with-
out essentially increasing the numerical effort. Only a few
coefficients of the marix in the emerging linear system must
be altered.

By taking into account all these linear terms the set of equa-
tions which results from implicit differencing is represented by
a band matrix with temporally constant coefficients thas can be
factorized once and for all, This advantage can be conserved
if the weak nonlinearity is discretized in an explicit form, viz.,

(fgh = Dlfgl + OAx). (3.5)

This choice happens to produce no instability problems of the
scheme as long as the nonlinearity is weak. Hartig [12] uses a
Newton algorithm in which he solves the nonlinearities also
implicitly. His scheme, because of the iterations, has the disad-
vantage of consuming much more CPU time than our pro-
posed scheme.

With the above operators the difference equations replacing
the differential equations read
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Dila, — a] + D;;][hlal] + CVD;;'[(HU —a)iy] =0, (3.6)

Diay + DG [haus] + aD[au:] =0, 3.7
Dy, — $e’hiD%u, — 1€ D0 (1]

+ 3aD5[ul] + DI ag + (v, vl — vust = v, (3.8)
Di[a; — 3 ShID U,
— 5&7h, DY Thouy) + k8*hiDi )
+3aDyu3) + DY [Say + (1 — Hay]

+ v tvust —vat™ =0 (39

They are valid for a channel in 0 < x < [ corresponding to
) < j < J, respectively. This solution requires boundary condi-
tions at the channel ends. If it is closed at j = O and j = J with
impermeable walls, the following boundary conditions apply
for all time steps n

n

[ ——
an a

Wi =0, Axm=omm, (3.10)
W =0, ﬁi§@=omn, (3.11)
ul; =0, ﬁ§£@ﬁ=omm, (3.12)
uly =10, ﬂ;ikﬂ=OMﬂ, (3.13)

where the boundary conditions of Neumann type for the eleva-
tions are discretized by a forward and a backward difference,
respectively, instead of central differences. This is the only
place where the order of approximation is G{Ax) rather than
O(Ax?). Second-order approximation could be introduced for
consistency, but is not important as the approximations (3.10)—
(3.13) are localized.

3.2. Stability

The stability of the proposed scheme is examined in the
usual way by using Fourier analysis [31, 19]. This method is
only applicable to linear equations with censtant coefficients.
Therefore, the nonlinear terms are neglected in this analysis,
o = 0. Further restrictions arise because the coefficients must
be constant. The stability criterion cannot be established for
variable topography, and so we set A, constant here. Further-
more, external forcing and boundary conditions cannot be han-
dled by this method. Computations, however, showed that the
stability exhibited by the simplified equations carries over to
the general set of equations provided the physical restrictions
of the model are fulfilled.

If h, is constant the dispersive terms can be collected in Egs.
{2.3) and (2.4) by using the abbreviations
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Br = 3hi, (3.14)
Bz = 3hhy, (3.15)
=} &hi (3.16)
v: = Shhy + 3h3. 3.17)
They then become
782(16]2{] + BQHZ)XIH (318)
—&X (i + Yot (3.19)

in the momentum equation of the upper and of the lower lay-
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with an arbitrary wave number k. In doing so the first and
second spatial derivatives can be expressed as

Dif— f & quAx _ U:f 3.21)
D, f— 27°(K) C°S("‘ Ax) - 2{;?. (3.22)

Collecting the amplitudes dy(k, £), 4,(k, t), Gk, 1), and Gxk, 1)
for the elevations and mean velocities as a four vector and
employing matrix notaticn, the transformed equations take
the form

: Ax"t! = Bx”, (3.23)
ers, respectively.
To examine the stability of the linearized field equations the 1.0
spatial variation of each quantity is replaced by a Fourier
transform X" = (45, 44, a7, ﬁg)T (3.24)
fr— flk) expikj Ax (3.20) and
. Az
1 -1 1511,5 0
0 1 0 1£h2S
a={ - , f:e ; (3.25)
. Af £ &7/
=L 0 _ _
leS 1 szC—I-v+v szC 7
LY, o1 o Ar 2ely, 2ey,
”SAxS i(1 5)AxS szc—v, lfA CH+uwvit+w
1 0 0 0
01 0 0
B = 28783 288, (3.26)
00 1 A c - Ax C
2e2y, 2e%y,
00 Ax? ¢ Ax? ¢

The standard stability criterion is defined for a matrix equa-

tion in the form [29, 31]

x™ = AT'Bx® (3.27)
Then the stability depends on the norm of the eigenvalues of
the matrix A~'B: If the moduli of all eigenvalues are less than
unity no component is magnified by the time step.

The eigenvalue problem A™'B — Al was treated numerically.
For chosen geometry s and #; and df = dx the matrix A was
evaluated, inverted, and then the matrix product was computed.
Using a standard algorithm for the eigenvalue problem 7] all
examined geometrical configurations led to eigenvalues A with

their moduli equal or less than unity even in cases where the
viscosities v,, v;, and v, were all set to zero. Eigenvalues of
modulus one were simple. This stable behavior is well known
from implicit finite difference schemes.

Beyond this linear analysis experimenting with the nonlinear
equations including variable topography indicated stability for
the choice dt = dx, provided that the physical limitations of
the model were observed.

Figure 2 shows the dependence of the maximum amplitude
on the step size Ax for fixed initial and geometrical conditions.
If fewer than 400 gnd points were used (corresponding to
Ax = 0.025), a strong dependence of the maximum amplitude
and of the wave form on Ax is found. However, for more than
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FIG. 2. Influgnce of the step size. The upper part of the figure shows the

dependence of the maximum amplitede on the number of grid points. If more
than 400 grid points are used the influence is less than 10%. The lower part
of the figure shows the dependence of the charged CPU time on the number
of grid peints. It is increasing rapidly when the number of grid points is
increased. Figure 3 shows the corresponding time series.

400 grid points the amplitude becomes nearly independent of
the number of grid points while the consumed CPU time in-
creased rapidly. The choice of 400 grid points was regarded
as an acceptable compromise for the problem especially when
the shape of the computed waves had to be predicted. Figure
3 shows the calculated time series for 100 (Ax = 0.1), 200
(Ax = 0.05), 400 (Ax = 0.025), 800 (Ax = 0.0125), and 1600
(Ax = 0.00625) grid points. The shape of the waves does not
depend on the step size if 400 and more grid points are used.
Therefore the following applications were all calculated with
400 grid points for the spatial discretization. The dimensionless
quantities are chosen to be the same as those for the calculations
presented in Figs. 2 and 3.

4, APPLICATIONS

4.1. Comparison with Experiments

Schuster [32] built an experimental device which allowed
observations of nonlinear wave propagation in a two layer fluid,
Fig. 4. A 10-m long channel of 33 X 33 cm’ cross section
was filled with fresh and salt water of different layer depths.
Stratification was such that § = 0.98. At the left end of the
channel a wave generator was installed which excites the inter-
nal mode by moving the same volume of fluid m both layers
in opposite directions. At six positions, P1 to P6, the time series
of the elevations of the interface were recorded by conductivity
measurements. In Fig. 5 the measured time series at positions
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Pl to P6 are compared with those obtained from numerical
computations. A detailed description of how the experiments
were performed and this comparison is achieved is reserved
for a different paper; see Schuster et al. [33]. The displayed
data reproduce the propagation of an internal soliton-like wave
over a shelf which is positioned at gauge P3 and blocks 70%
of the lower layer. The observed wave behaves like a soliton
for a short time, but due to friction the amplitude decreases
and the wave is no longer a wave of permanent form; therefore
we call it a soliton-like wave, It travels from the left end of
the channel with nearly constant speed until it reaches the shelf.
Then the wave splits into an oscillating wave train which is
transmitted over the shelf while a very small part of the incom-
ing wave is reflected. On the shelf, because of a reduction of
equivalent depth, the phase speed is smaller than it is in the
deep region. Behind the shelf the wave transforms again into
a solitary type wave and stabilizes as such. Later, the wave is
completely reflected at the right end of the channel and travels
back to the left.

In Fig. 5 the solid lines reproduce the measured data of
Schuster [32] while the dashed lines represent the calculated
time series using the above described numerical scheme. As
can be seen the agreement between numerical results and exper-
imental data is excellent. The model achieves reproduction of
the whole evolution of the wave, starting from the generation
at the left end of the channel over the fission of the transmitted
and reflected wave at the shelf to the reflection at the right end

=100 /\
N
n=200 A S
T
% n=400 /\ FANP-N
c VY
L]
®
> =
L)
]
=800 N A~
V A4
n=1800 JAWNIUN
VAR
0.0 é.i Dl.z 0].3 0'.‘ 6.5 Dl.ﬂ 0‘.7 ﬁl.ﬂ C;.ﬂ |I‘0

time t/tmax

FIG. 3. Waveform depending on the step size. Time series for 100, 200,
400, 800, and 1600 grid points are shown, The calculated time intervals are
the same for all five computations. Increasing the number of grid points leads

“to a slight increase of the phase speed and to a steepening of the leading

wave, A dependence of the wave form for more than 400 grid points cannot
be discerned.
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FIG. 4. Experimental setup. Channel with gauges and shelf.

of the channel. Previous comparisons of experimental data and
the sech?-soliton solution of the Korteweg—deVries equation
[23, 22, 34] led to an agreement of the shape of the wave;
however, a comparison of the complete evolution of internal
waves was not achieved.

4.2. Wind Forcing

Wind forcing is the main energy input into lakes and leads
to large internal waves if a stratification is present. These pro-
cesses can also be modeled with our numerical scheme, when
a wind force is introduced as a shear stress acting on the free
surface. Our model computations start from a state of rest; a
constant shear stress is applied uniformly at the free surface at
time ¢ = (0, maintained for a time, which is small in comparison

P3

elevation a/A

u T
1209 1800

tima t (8)

0.0

FIG. 5. Comparison of experimental data and computations, Wave propa-
gation over variable topography. Solid lines represent timne series of experimen-
tal data; dashed lines stand for computational results. The geometry of the
shelf and the positions of the gauges are shown in the previous Fig. 4. The
shelf blocks 70% of the lower layer.

to the time, which a baroclinic wave needs to travel in the
channel and then suddenly is switched off. Figure 6 shows the
calculated time series of the surface elevation and of the internal
elevation at the gauges P1 and PH. To visualize the surface
elevation it was magnified by a factor of 50. The barotropic
mode is tmmediately excited while it takes some time before
the interface starts moving. While the wind blows from left to
right the interface is depressed at the right end of the channel,
whereas it rises at the left end. This is well known for up-
and down-welling processes. A large internal depression wave
moves from the right to the left and a large internal wave of
elevation travels in opposite direction. These waves decay into
oscillating wave trains. The internal motion leads to a modula-
tion of the free surface which can also be discerned in Fig. 6.
This surface signal is the trace allowing the detection of large
internal waves in the ocean [23, 22, 36].

1, surface,

elevation at gauges P1.and P8

P8, intarface

T T T 1

T T T
04 0.6 0.6 07

tims t/tmax

FIG. 6. Model response to wind forcing. Comparison of the surface eleva-
tion (magnified by a factor of 50} and the internal elevation recorded at the
left and right ends of the channel after a short wind input. Both eigenmodes
are excited.
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5. CONCLUSIONS

The purpose of this paper was the presentation of a nonlinear
equation set for the propagation of barotropic and baroclinic
waves in a two-layered fluid system and its numerical solution
by an implicit and stable finite difference technique. The pro-
posed scheme was shown to be unconditionally stable for the
{inearly reduced equations with constant coefficients; its appli-
cation to the complete nonlinear equations was shown to exhibit
stable behavior, provided the model equations, initial and
boundary conditions conform with the limiting physical as-
sumptions, for which the model equations were derived. Both,
forced and free weakly nonlinear waves in a nonrotating channel
can be computed with their aid.

One special feature of the equations and their successtul finite
difference approximation is the simultancous determination of
the motions of the free surface and the interface between the
layers; i.e., no rigid-lid assumption had to be invoked. Another
speciality is that variable topography is incorporated. Further-
more, dissipation can easily be worked into the equations with-
out changing the main part of the integration routines.

These properties are essential in spatially two-dimensional
applications of propagation of internal waves in the ocean and
in lakes where also effects of the rotation of the Earth must be
incorporated. These equations have been derived [5], and we
are optimistic that their numerical treatment along these lines
will be successful. Such a model can then be used in ocean
wave problems in shelf regions or in lakes.
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